Electrophysiological Measures of Pesticide Toxicity to the Salmon Olfactory System Jason Sandahl Oregon State University David H. Baldwin Northwest Fisheries Science Center Jeffrey Jenkins Oregon State University Nathaniel L. Scholz Northwest Fisheries Science Center ## * RUNNER UP * Student Poster Presentation Graduate Category ## Abstract Three classes of current use pesticides altered peripheral and central neurophysiological responses of the coho salmon olfactory system to two natural odorants (L-serine and taurocholic acid). Juvenile salmon were exposed for seven days to 0.625 to 5.0 mg/L chlorpyrifos (organophosphate), 0.05 to 0.20 mg/L esfenvalerate (pyrethroid) or 5.0 to 20 mg/L copper (metal), and *in-vivo* field potential recordings were then measured from the olfactory epithelium (electro-olfactogram, EOG) and the olfactory bulb (electro-encephalogram, EEG), simultaneously. The pesticides altered odorant-evoked responses by reducing peak amplitude of the EOG and EEG, and/or by inducing post-stimulus burst activity measured in the olfactory bulb. Collectively, these data indicate that the salmon olfactory system is vulnerable to the neurotoxic effects of certain current use pesticides, and that *in vivo* electro-physiological recordings can provide a sensitive, quantitative, and reproducible measure of sensory impairment under environmentally realistic exposure conditions.